Not Just an Empty Threat: Subgame-Perfect Equilibrium in Repeated Games Played by Computationally Bounded Players
نویسندگان
چکیده
We study the problem of finding a subgame-perfect equilibrium in repeated games. In earlier work [Halpern, Pass and Seeman 2014], we showed how to efficiently find an (approximate) Nash equilibrium if assuming that players are computationally bounded (and making standard cryptographic hardness assumptions); in contrast, as demonstrated in the work of Borgs et al. [2010], unless we restrict to computationally bounded players, the problem is PPAD-hard. But it is well-known that for extensive-form games (such as repeated games), Nash equilibrium is a weak solution concept. In this work, we define and study an appropriate notion of a subgame-perfect equilibrium for computationally bounded players, and show how to efficiently find such an equilibrium in repeated games (again, making standard cryptographic hardness assumptions). Our algorithm works not only for games with a finite number of players, but also for constantdegree graphical games.
منابع مشابه
A “Super” Folk Theorem for Dynastic Repeated Games∗
We analyze “dynastic” repeated games. A stage game is repeatedly played by successive generations of finitely-lived players with dynastic preferences. Each individual has preferences that replicate those of the infinitely-lived players of a standard discounted infinitely-repeated game. When all players observe the past history of play, the standard repeated game and the dynastic game are equiva...
متن کاملFinitely repeated games with social preferences
A well—known result from the theory of finitely repeated games states that if the stage game has a unique equilibrium, then there is a unique subgame perfect equilibrium in the finitely repeated game in which the equilibrium of the stage game is being played in every period. Here I show that this result does in general not hold anymore if players have social preferences of the form frequently a...
متن کاملThe Folk Theorem in Dynastic Repeated Games∗
A canonical interpretation of an infinitely repeated game is that of a “dynastic” repeated game: a stage game repeatedly played by successive generations of finitely-lived players with dynastic preferences. These two models are in fact equivalent when the past history of play is observable to all players. In our model all players live one period and do not observe the history of play that takes...
متن کاملA Foundation for Markov Equilibria in Infinite Horizon Perfect Information Games
We study perfect information games with an infinite horizon played by an arbitrary number of players. This class of games includes infinitely repeated perfect information games, repeated games with asynchronous moves, games with long and short run players, games with overlapping generations of players, and canonical non-cooperative models of bargaining. We consider two restrictions on equilibri...
متن کاملRational Behaviour and Strategy Construction in Infinite Multiplayer Games
We study infinite games played by arbitrarily many players on a directed graph. Equilibrium states capture rational behaviour in these games. Instead of the well-known notion of a Nash equilibrium, we focus on the notion of a subgame perfect equilibrium. We argue that the latter one is more appropriate for the kind of games we study, and we show the existence of a subgame perfect equilibrium in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014